The Rice Alliance Clean Energy Accelerator has named its fifth cohort. Photo via the Ion

The Rice Alliance Clean Energy Accelerator has named 12 early-stage startups to its latest cohort.

The hybrid program, which operates in a hybrid capacity based out of the Ion, runs for 10 weeks and provides energy transition startups with training focused on fundraising, pilots, partnerships and sale. It begins July 8 and will be led by executive director Kerri Smith and program director Matthew Peña with support from executives-in-residence Lynn Frostman, John Jeffers, David Horsup and Dev Motiram.

The accelerator will culminate with a demo day on Sept. 18 at the Rice Alliance Energy Tech Venture Forum during the Houston Energy and Climate Startup Week.

Members of this year's cohort come from the Houston area as well as across the U.S. and Canada.

Class 5 for the Rice Alliance Clean Energy Accelerator includes:

  • Aqua-Cell Energy, which builds industrial-scale overnight batteries to provide affordable solar power
  • Arculus, a company that provides multilayer internal coating for pipelines that lowers friction, extends pipeline life and enables carbon dioxide transport and hydrogen blending
  • AtmoSpark, a Houston-based sustainable cooling and freshwater company that provides an electric field-driven air separation system that reduces dehumidification energy costs for data centers and industrial facilities
  • AtoMe, which delivers durable metallic composites to energy and aerospace companies using an eco-friendly dry blade method that eliminates harmful chemicals
  • ConceptLoop, a company that converts plastic waste into eco-friendly, low-carbon aggregate
  • Fathom Storage, which provides a more solidly embedded and steel-efficient anchoring solution for offshore service providers, wind energy developers and research institutes
  • GeoKiln, a Houston-based company that addresses issues of subsurface hydrogen extraction by applying proven oil and gas techniques to accelerate natural hydrogen reactions, enabling hydrogen production
  • Innowind Energy Solutions, a company that provides nonintrusive, active flow control devices to boost energy production and extend turbine lifespan
  • Lukera Energy, which transforms waste methane into high-value methanol using a breakthrough nanobubble technology
  • Metal Light Inc., which has developed a scalable, cost-effective Metal-Air generator to replace diesel generators
  • Moonshot Hydrogen, a company that converts food and agricultural waste into clean hydrogen and bioethanol
  • Resollant, a Woodlands-based company that delivers compact, zero-emission hydrogen and carbon reactors to refineries, petrochemical plants, steel and cement manufacturers and fuel producers

The Rice Alliance Clean Energy Accelerator has supported 55 ventures since it was founded in 2021, collectively raising over $250 million in funding, according to the university. See last year's cohort here.

Fifteen startups — with clean energy solutions involving everything from solar energy to hydrogen — are joining Rice Alliance's Clean Energy Accelerator later this summer. Photo via Getty Images

Houston cleantech accelerator reveals 15 startups to 2023 cohort

energy 2.0

A clean energy program has announced its third cohort and named the 15 startups that were accepted into to the accelerator.

The Rice Alliance's Clean Energy Accelerator revealed its 2023 cohort that will be in the 10-week program that kicks of July 25. CEA, a hybrid program based out of the Ion, will wrap up with a Demo Day alongside the 20th Annual Rice Alliance Energy Tech Venture Forum on September 21.

The accelerator, led by Kerri Smith and Matt Peña, provides the cohort with programming, networking, and mentorship from six executives in residence — Nathan Ball, Fatimah Bello, Michael Egan, Michael Evans, Stephen Sims, and Deanna Zhang.

Since the Clean Energy Accelerator launched in 2021, the program has supported 29 ventures that have gone on to raise over $75 million in funding, identified and launched pilots, and created jobs, According to Rice, many of these companies relocated to Houston.

Class 3, which has already raised $23.3 million in funding, hails from four countries and seven states and are addressing a range of energy solutions — from advanced materials, carbon management/capture, energy storage, hydrogen, solar energy, wind energy, and more. They were selected by a screening committee consisting of more than 50 industry experts, investors, energy leaders, and entrepreneurs.

The third class, as announced by Rice Alliance, is as follows:

  • Ayrton Energy, based in Alberta, Canada,provides hydrogen storage technology that improves hydrogen transport logistics for distributed energy applications.
  • Headquartered in Massachusetts,Carbix transforms atmospheric carbon dioxide emissions into building materials using proprietary reactor technology.
  • Houston-based CryoDesalination lowers the carbon footprint and cost of removing salts and heavy metals from water and industrial effluents.
  • Digital Carbon Bank,based in Alberta, Canada, provides a carbon solution tailored for the energy industry.
  • Chandler, Arizona-basedEarthEn provides compressed carbon dioxide-based energy storage and artificial intelligence solutions allowing grid owners/operators to be completely renewable.
  • H Quest Vanguard, from Pittsburgh, provides green hydrogen at a five to 10 times lower cost to users of natural gas to decarbonize industrial heat.
  • Calgary, Alberta-based Highwood Emissions Management'sSaaS platform allows oil and gas companies to understand their emissions and develop robust plans to reduce them.
  • Icarus RT,from San Diego, California, improves photovoltaic efficiency while enabling useful heat energy storage.
  • Los Altos, California-based Khepra has developed a chemical manufacturing platform for the low-cost, sustainable production of agrochemicals.
  • Binghamton, New York-based Natrion’s electrolyte is a drop-in solid-state battery component that can be rapidly implemented into existing batteries.
  • Oceanways, based in London, provides low-cost, flexible and scalable zero-emission underwater "virtual pipelines" to energy producers.
  • Relyion Energy, from Santa Clara, California, is developing battery usage and intelligence solutions with deeper data and insights for retired electric vehicle batteries.
  • Massachusetts-based Triton Anchor provides a more cost-effective anchoring solution for offshore clean energy with minimal environmental impact.
  • TROES, from Markham, Ontario, provides a 4-in-1 microgrid solution with integrated hardware and software for a streamlined energy storage experience.
  • Mexico City-basedTycho Solutionssupports clean energy project developers by saving time and money during the critical project-siting process.
------

This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Guest column: How growing energy demand will impact the Texas grid

Guest Column

Although Texas increased its power supply by 35% over the last four years, a recent report from ERCOT predicts that Texas’ energy demand will nearly double by 2030, with power supply projected to fall short of peak demand in a worst-case scenario beginning in summer 2026. There are many factors and variables that could either increase or decrease the grid’s stability.

Homebuilding in Texas

One of the most easily identifiable challenges is that the population of Texas is continuing to grow, which places greater demand on the state’s power grid. With its booming population, the state is now the second most populous in the country.

In 2024, Texas led the nation in homebuilding, issuing 15% of the country's new-home permits in 2024. Within the first two months of 2025, Houston alone saw more than 11,000 new building permits issued. The fact that Houston is the only major metro in the United States to lack zoning laws means it does not directly regulate density or separate communities by use type, which is advantageous for developers and homebuilders, who have far fewer restrictions to navigate when constructing new homes.

Large-scale computing facilities

Another main source of the growing demand for power is large-scale computing facilities such as data centers and cryptocurrency mining operations. These facilities consume large amounts of electricity to run and keep their computing equipment cool.

In 2022, in an effort to ensure grid reliability, ERCOT created a program to approve and monitor these large load (LFL) customers. The Large Flexible Load Task Force is a non-voting body that develops policy recommendations related to planning, markets, operations, and large load interconnection processes. LFL customers are those with an expected peak demand capacity of 75 megawatts or greater.

It is anticipated that electricity demand from customers identified by ERCOT as LFL will total 54 billion kilowatt-hours (kWh) in 2025, which is up almost 60% from the expected demand in 2024. If this comes to fruition, the demand from LFL customers would represent about 10% of the total forecast electricity consumption on the ERCOT grid this year. To accommodate the expected increase in power demand from large computing facilities, the state created the Texas Energy Fund, which provides grants and loans to finance the construction, maintenance, modernization, and operation of electric facilities in Texas. During this year’s 89th legislative session, lawmakers approved a major expansion of the Texas Energy Fund, allocating $5 billion more to help build new power plants and fund grid resilience projects.

Is solar power the key to stabilizing the grid?

The fastest-growing source of new electric generating capacity in the United States is solar power, and Texas stands as the second-highest producer of solar energy in the country.

On a regular day, solar power typically constitutes about 5% of the grid’s total energy output. However, during intense heat waves, when the demand for electricity spikes and solar conditions are optimal, the share of solar power can significantly increase. In such scenarios, solar energy’s contribution to the Texas grid can rise to as much as 20%, highlighting its potential to meet higher energy demands, especially during critical times of need.

While the benefits of solar power are numerous, such as reducing greenhouse gas emissions, lowering electricity bills, and promoting energy independence from the grid, it is important to acknowledge its barriers, such as:

  • Sunlight is intermittent and variable. Cloudy days, nighttime, and seasonal changes can affect energy production, requiring backup or storage solutions. Extreme weather conditions, such as hailstorms, can damage solar panels, affecting their performance and lifespan.
  • The upfront costs of purchasing and installing solar panels and associated equipment can be relatively high.
  • Large-scale solar installations may require significant land area, potentially leading to concerns about land use, habitat disruption, and conflicts with agricultural activities.
  • Integrating solar power into existing electricity grids can pose challenges due to its intermittent nature. Upgrading and modifying grids to handle distributed generation can be costly.

Although Texas has made progress in expanding its power supply, the rapid pace of population growth, homebuilding, and large-scale computing facilities presents challenges for grid stability. The gap between energy supply and demand needs to continue to be addressed with proactive planning. While solar power is a promising solution, there are realistic limitations to consider. A diversified approach that includes both renewable and traditional energy sources, along with ongoing legislative movement, is critical to ensuring a resilient energy future for Texas.

---

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

Enbridge activates first solar power project in Texas

power on

Canadian energy company Enbridge Inc., whose gas transmission and midstream operations are based in Houston, has flipped the switch on its first solar power project in Texas.

The Orange Grove project, about 45 miles west of Corpus Christi, is now generating 130 megawatts of energy that feeds into the grid operated by the Electric Reliability Council of Texas (ERCOT). ERCOT supplies electricity to 90 percent of the state.

Orange Grove features 300,000 solar panels installed on more than 920 acres in Jim Wells County. Construction began in 2024.

Telecom giant AT&T has signed a long-term power purchase agreement with Enbridge to buy energy from Orange Grove at a fixed price. Rather than physically acquiring this power, though, AT&T will receive renewable energy certificates. One renewable energy certificate represents the consumption of one megawatt of grid power from renewable energy sources such as solar and wind.

“Orange Grove is a key part of our commitment to develop, construct, and operate onshore renewable projects across North America,” Matthew Akman, executive vice president of corporate strategy and president of renewable power at Enbridge, said in 2024.

Orange Grove isn’t Enbridge’s only Texas project. Enbridge owns the 110-megawatt Keechi wind farm in Jacksboro, about 60 miles northwest of Fort Worth, and the 249.1-megawatt Chapman Ranch wind farm near Corpus Christi, along with a majority stake in the 203.3-megatt Magic Valley I wind farm near Harlingen. The company’s 815-megawatt Sequoia solar project, east of Abilene, is scheduled to go online in early 2026. Enbridge has signed long-term power purchase agreements with AT&T and Toyota North America for energy produced by Sequoia.

During a recent earnings call, Enbridge President and CEO Greg Ebel said that given the “unprecedented demand for power generation across North America,” driven largely by explosive growth in the data center sector, the company expects to unveil more renewable energy projects.

“The policy landscape for renewables is dynamic,” Ebel said, “but we think we are well-positioned with our portfolio of late-stage (projects).”